Surface-mediated Organometallic Synthesis: Formation of $[Os_5C(CO)_{14}]^{2-}$ from $[Os_3(CO)_{12}]$ on MgO

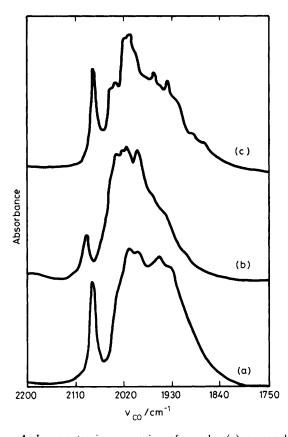
Anthony S. Fung,^a Patricia A. Tooley,^a Michael J. Kelley,^b and Bruce C. Gates*^a

 ^a Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, U.S.A.
^b E. I. DuPont de Nemours and Company, Wilmington, DE 19898, U.S.A.

 $[Os_3(CO)_{12}]$ is converted on the surface of partially dehydroxylated MgO under 1 bar of flowing CO at 550 K into $[Os_5C(CO)_{14}]^{2-}$; this one-step synthesis is far simpler and gives much higher yields (65%) than the conventional synthesis.

The best known syntheses of high-nuclearity metal carbonyl clusters proceed by condensation of reactive fragments generated photochemically or pyrolytically, by redox condensations of anionic and neutral clusters, or by reduction of high-nuclearity clusters.^{1,2} These syntheses typically suffer from lack of reproducibility and low yields, with the attendant problems of separation. Here we report the use of a novel synthetic method involving reactions on the basic surface of a porous, high-area solid, MgO; $[Os_3(CO)_{12}]$ is simply converted to $[Os_5C(CO)_{14}]^{2-}$ in high yield on this surface in the presence of CO.

 $[Os_3(CO)_{12}]$ was slurried from dry hexane solution, using Schlenk techniques, onto the surface of partially dehydroxylated MgO powder (75 m² g⁻¹, MCB MX-65, reagent) which had been calcined and evacuated at 675 K. The slurry was stirred for 4—6 h until uptake of $[Os_3(CO)_{12}]$ was complete.


Figure 1. I.r. spectra in v_{CO} region of samples (a) prepared by adsorption of $[Os_3(CO)_{12}]$ on MgO under N₂; (b) after 2 h exposure to CO at 1 bar and 420 K; (c) after 4 h exposure to CO at 1 bar and 550 K.

The solvent was evaporated and the solid dried overnight *in vacuo*. The resulting yellow powder, containing 0.97% Os as determined by X-ray fluorescence, had an i.r. spectrum (v_{CO} 2075m, 2006s,br, and 1949s,br cm⁻¹; Figure 1a) agreeing closely with that reported for a complex formulated as $[Os_3(CO)_{11}]^{2-}$ tightly ion-paired to the MgO surface.³

 $[Os_5C(CO)_{14}]^{2-}$ was formed on the surface by exposing 2 g of this sample to flowing CO for 4 h in a tube at 550 K and 1 bar. The sample was cooled in flowing CO to room temperature and removed in a nitrogen-filled glovebox. The carbonyl bands in the i.r. spectrum of the bright yellow powder revealed the formation of a new surface complex (Figure 1c). Extraction of the powder with $[(Ph_3P)_2N]Cl$ (PPNCl) in acetone gave a golden yellow solution with an i.r. spectrum (v_{CO} 2039w, 2023w, 1991s, 1977vs, 1970vs, 1947s, 1926w, and 1891w cm⁻¹) indicative of [PPN]₂[Os₅C(CO)₁₄].⁴ The identity of this cluster was confirmed by fast atom bombardment mass spectrometry as well as by characterization of the [PPh₃Au]+ derivative, prepared by addition of [AuPPh₃]Cl in the presence of Tl₂SO₄ to the bright yellow extract solution. Within 10 min, the solution turned red-orange, giving an i.r. spectrum (v_{CO} 2085w, 2051vs, 2036m,sh, 1965w, 1936w, and 1902w cm^{-1}) indicative of authentic $[Os_5C(CO)]_{14}$ ${AuPPh_3}_2$.⁴ Further characterization of $[Os_5C(CO)_{14}]^2$ was carried out by reaction with concentrated sulphuric acid to yield $[H_2Os_5C(\dot{C}O)_{15}]^4$ and by oxidation with ferrocinium tetrafluoroborate in the presence of CO to give $[Os_5C(CO)_{15}]$ and $[Os_5C(CO)_{16}]$, which were identified by i.r. spectroscopy. The yields of $[Os_5C(CO)_{14}]^{2-}$ were >65%. The formation of $[Os_5C(CO)_{14}]^{2-}$ on the MgO surface in a

The formation of $[Os_5C(CO)_{14}]^{2-}$ on the MgO surface in a controlled environment cell at 1 bar was monitored by i.r. spectroscopy. Upon heating of the sample formed by adsorption of $[Os_3(CO)_{12}]$ to 360 K under CO, the peaks broadened, and distinct new bands appeared at 2103w, 2088w, 2028s,sh, and 1945m,sh cm⁻¹. At 420 K, the starting material was almost completely converted, as shown by the disappearance of the 2075 cm⁻¹ band (Figure 1b). At 475 K, the spectrum consisted of one strong band at 2011 cm⁻¹ with shoulders at 2081w, 2051m, 1973m, and 1943m cm⁻¹. After 4 h at 550 K followed by cooling to room temperature under CO, the i.r. spectrum of the surface species and the species extracted with [PPN]Cl in acetone confirmed the formation of [PPN]₂[Os₅C(CO)₁₄].

In an attempt to determine the nature of intermediate surface species formed in the reaction of the chemisorbed triosmium carbonyl cluster with CO, a separate experiment was conducted for a shorter time at lower temperature. The evolution of the starting material was followed by *in situ* i.r. spectroscopy as the temperature was increased to 420 K with the sample under flowing CO for 2 h. The resulting yellow material was then extracted with [PPN]Cl in acetone. The yellow solution exhibited i.r. bands at 2049s, 2042m,sh, 2023s, 2002vs, 1996sh, 1981m, 1968sh, 1950w,sh, and 1922w cm⁻¹.

The bands at 2042m,sh, 1996sh, 1981m, 1968sh, 1950w,sh, and 1923w cm⁻¹ are assigned to $[Os_5C(CO)_{14}]^{2-}$ and the other three bands to $[H_3Os_4(CO)_{12}]^{-.5}$ The presence of $[H_3Os_4(CO)_{12}]^{-}$ on the MgO surface suggests its role as an intermediate condensation product.

In summary, the results demonstrate a simple one-step, high-yield synthesis of $[Os_5C(CO)_{14}]^{2-}$ from readily available starting materials, $[Os_3(CO)_{12}]$ and MgO, under mild conditions. In contrast, in the heretofore best known synthesis,^{4,6} this cluster has been isolated as a minor product after a multistep synthesis requiring tedious separations. Both procedures involve pyrolytic conversion of $[Os_3(CO)_{12}]$ and rely on the presence of basic media $[Na_2(CO)_3]$ for the traditional method, the MgO surface for the new synthesis]. When the basic surface is used as the reaction medium, the synthesis is facilitated, the yield is greatly increased, and the product purification is markedly simplified. Surface-mediated syntheses may find wide application in organometallic chemistry.

This work was supported by the National Science Foundation (CBT-8317140 and CBT-8605699).

Received, 26th June 1987; Com. 901

References

- 1 G. L. Geoffroy in 'Metal Clusters in Catalysis,' eds. B. C. Gates, L. Guczi, and H. Knözinger, Elsevier, Amsterdam, 1986.
- 2 M. D. Vargas and J. N. Nicholls, *Adv. Inorg. Chem. Radiochem.*, 1986, **30**, 123.
- 3 R. Psaro, C. Dossi, and R. Ugo, J. Mol. Catal., 1983, 21, 331.
- 4 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, J. N. Nicholls, J. Puga, P. R. Raithby, M. J. Rosales, M. Schroder, and M. D. Vargas, J. Chem. Soc., Dalton Trans., 1983, 2447.
- 5 B. F. G. Johnson, J. Lewis, P. R. Raithby, G. M. Sheldrick, K. Wong, and M. McPartlin, J. Chem. Soc., Dalton Trans., 1978, 673.
- 6 C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Dalton Trans., 1975, 2606; B. F. G. Johnson, J. Lewis, P. R. Raithby, M. J. Rosales, and D. A. Welch, J. Chem. Soc., Dalton Trans., 1986, 453.